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Abstract

In a previous paper, it was shown that consistent high-order discretization can make a Lax–Wendroff method stable

in the presence of small cells near the boundary in one space and one time dimension. Here I show that a straight-

forward extension of this approach to two space dimensions is similarly successful.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Solutions to the wave equation,

r2

�
� o2

ot2

�
wð~x; tÞ ¼ 0; ð1Þ

satisfy the following identity relating the field at three equally spaced times:

1

2
½wð~x;DtÞ þ wð~x;�DtÞ� ¼ LDtwð~x; 0Þ � cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtÞ2mr2

q
wð~x; 0Þ ð2Þ

¼
X1
m¼0

ðDtÞ2mr2m

ð2m!Þ wð~x; 0Þ: ð3Þ

The well-known Lax–Wendroff method is based on this identity and is usually implemented using some

finite difference approximations to powers of r2. Alpert et al. [1] suggested various high-order discreti-

zations of Eq. (2) that can give stable time marching in one space and one time dimension, even with small

cells (size < Dt) in parts of the mesh. Such discretizations have been further analyzed by Li and Greengard
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[3] showing that a certain class (‘‘strongly consistent’’) of such schemes have the desired properties. In a

previous paper by Visher et al. [4], a prescription for an explicit discretization of Eq. (2) in one space di-

mension, along with a projection operator that enforces the desired boundary conditions, was given.
Numerical examples showed that alternated use of the resultant propagation and projection operators can

give stable results with discretization error that decreases as a high power of the discretization scale. A key

ingredient of that approach is recognizing the implicit identity operator ðL0Þ when Eq. (2) is solved for

wð~x;DtÞ:

wð~x;DtÞ ¼ 2LDtwð~x; 0Þ � L0wð~x;�DtÞ: ð4Þ

Discretizing L0 by the same prescription as is used for LDt results in a low pass filter which facilitates

stability. In this paper, I show that a straightforward implementation of this approach in two space di-

mensions is similarly successful in some situations. However, I have not formulated any underlying stability
theory.
2. Discretization

In this section the prescription used for numerical evolution of the wave equation with boundary

conditions is given. This duplicates, to a large extent, the presentation of [4], and is included for com-

pleteness. A few aspects that arise only in more than one space dimension are detailed.

2.1. General discretization prescription

To use this method, we need to discretize linear operators: the ‘‘propagation’’ operator LDt and inter-

polation/extrapolation/differentiation operators. All operators acting on a field are discretized as follows.

The field is assumed to be tabulated at a collection of points ~xj, which need not be (but mostly are) on a

regular lattice. The result of a linear function a on some known fields fkð~xÞ (taken here to be polynomials)

are denoted as rk:

ða; fkÞ ¼ rk: ð5Þ

Linear functions are approximated by

ða; f Þ �
X
j

âjf ð~xjÞ: ð6Þ

The coefficients âj are computed by minimizing the weighted sum of squaresX
j

wjâ2j ; ð7Þ

subject to the constraints that the result be exact for the fields fk:X
j

âjfkð~xjÞ ¼ rk: ð8Þ

(Obviously the number of discretization points used must not be less than the number of functions fk.) The
coefficients are given by

âj ¼
1

wj

X
k

kkfkð~xjÞ; ð9Þ
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where the kk solve

X
k0

X
j

1

wj
fkð~xjÞfk0 ð~xjÞ

" #
kk0 ¼ rk: ð10Þ

In the case of equally spaced points, the wj may be taken to be equal. For nonregular meshes, it seems

reasonable to take them to be the weights of a suitable (i.e., of order commensurate with that of the dis-

cretization) quadrature rule for the integral of a function over the propagation region. In one space di-
mension, this was shown to result in reductions of about an order of magnitude in discretization error for a

typical range of discretization scales and orders.
2.2. Precomputation

Suppose we want to compute the time evolution in a spatial domain S, with suitable initial conditions

and boundary conditions on the boundary oS. The steps of the precomputation are:

• Choose the functions for which the discretization is to be exact. In our examples, we choose all polyno-
mials of degree not exceeding some chosen value d.

• Find the minimum stencil size for which the free space discretization will be stable.

• Choose discretization points in S. For most of S, these should be on a lattice, so that the propagation

operator can be applied by convolution. (I have used only square lattices, but it is conceivable that dis-

cretization on a triangular lattice could be somewhat more efficient, because of higher symmetry.) An

irregular mesh may be used to resolve better the field near the boundary oS. (This option is not explored

numerically in this paper.)

• Classify the discretization points as ‘‘bulk’’ or ‘‘border’’. Bulk points are those for which each point of
the stencil of the propagation operator corresponds to a discretization point on the square lattice. Border

points are the rest.

• For each of the border points, compute a discretization of the propagation operator using the point itself

and its neighbors. In some cases, I have found that it is necessary to use more neighbors in the border

region than in the bulk stencil to preserve stability. For a few cases (with high discretization order and

Neumann boundary condition), even the number of discretization points in the bulk had to be increased.

This did not occur in the ð1þ 1Þd examples studied in [4]. The issue of the number of points required to

maintain stability is an important subject for future research.
• Pick points on the boundary, and compute differentiators/extrapolators, using neighboring discretization

points, to them, for the desired boundary conditions. For example, for Dirichlet conditions, construct

extrapolators for the field and integer powers of r2.

• Decompose the outer product of the constraint vectors so that the projection operator can be applied

efficiently.

2.3. Propagation operator in bulk region

For efficiency in precomputation and convolution, most of the propagation domain is discretized by

tabulation of the field on a square lattice

wijn � wðiDx; jDx; nDtÞ: ð11Þ

The propagation operator

LDtB cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtÞ2r2

q
ð12Þ
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is discretized according to the general procedure above. The result of applying L to polynomial ‘‘testing’’

functions is (evaluated at the original)

LDt xmynð Þð0; 0; tÞ ¼ ðDtÞmþnAðm; nÞX mþ n
2

� �
; ð13Þ

where

Aðm; nÞ � 1

2p

Z 2p

0

dh cosmðhÞ sinnðhÞ ð14Þ

¼
ðm�1Þ!!ðn�1Þ!!
2
mþn
2 mþn

2ð Þ!
; m and n even;

0; otherwise;

8<
: ð15Þ

and

X ðmÞ � ð2mÞ2
Z 1

0

dxx2m�1 log

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

þ 1

x
¼ ½ð2mÞ!!�

2

ð2mÞ! : ð16Þ

The values of Eq. (13) are used to compute the coefficients associated with the nearest M lattice points to

the origin, so that

ðLDtwÞðx; y; tÞ �
X
ij

L̂ijðsÞwðxþ iDx; y þ jDx; tÞ; ð17Þ

where s ¼ Dt=Dx. In order to make the discretization exact for all polynomials of degree not greater than d,
M must be at least as big as the number ðd þ lÞðd þ 2Þ=2 of such polynomials. As in one dimension, it must

usually be greater to give stable propagation. Also, we insist on a stencil that has ‘‘square’’ ðD4Þ symmetry,
so that the allowed values of M are

f5; 9; 13; 21; 25; 29; 37; 45; 49; 57; 61; 69; 81; 89; 97; . . .g:

To determine if a discretization of L is stable, we look at the function

âðkx; ky ; sÞB
X
ij

L̂ij cosðkxiÞ cosðkyjÞ: ð18Þ

As in one dimension, propagation is stable only if both

âðkx; ky ; sÞ
���� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2ðkx; ky ; sÞ � âðkx; ky ; 0Þ

q ����6 1 ð19Þ

for all p6 kx; ky 6 p (the first Brillouin zone). If a particular discretization is unstable, a larger value of M
must be used.

2.4. Propagation operator in the border region

In the border region, the propagation operator is discretized differently than in the bulk, because (by

definition) a bulk stencil centered on a border point will not entirely overlay discretization points. The

requirement that the discretized operator give the correct answer (Eq. (13)) for polynomials up to the

chosen degree remains the same, however. The general discretization method given in Section 2.1 is

used, choosing the near neighbor discretization points to each border point. (These will usually include
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both border and bulk points.) This must, in general, be done independently for each border point, but

symmetries of the problem and the discretization point set could be used to reduce the necessary

precomputation. The number of points used can be the same as that ðMÞ in the bulk region, but in
some cases I have found empirically that more points are necessary to avoid instability. If a finer

discretization were used near the boundary, I would expect this necessity to have a greater tendency to

occur.

2.5. Boundary condition projection operator

This step exhibits the biggest change from one to two space dimensions, because in one dimension, there

are only two boundary points. In two dimensions, we need to pick a set of point on the boundary oS at
which to impose the boundary conditions. A reasonable approach is to take their separation to be com-

mensurate with the spacing of discretization points near the boundary. For example, with the discretization

points all on a square lattice, I use boundary points along oS separated by the distance nearly equal to the

lattice constant. In the case of a nonuniform mesh, points separated on the boundary by a distance

commensurate with the smallest spacing in the nearby propagation region would be appropriate. For each

boundary point, extrapolation/differentiation estimators are computed for the quantities constrained by

desired boundary condition and powers of the Laplacian operating on these. For example, for Dirichlet

conditions, none computes estimators for

r2pwð~xÞ �
X
i

biwð~xiÞ ð20Þ

for p ¼ 0; . . . ; ½d=2�,~x is a boundary point, d is the degree of the discretization, and the sum is taken over

those i for which ~xi is a near neighbor of ~x. For Neumann conditions, we use computed estimators for

r2pn̂ � rwð~xÞ, where n̂ is the normal to oS and p ¼ 0; . . . ; ½d=2�. In discretization of boundary conditions, I

have always used the same number of points~xj as used for the propagation operator in the border region,
which may be more than the number used in the bulk region, as described in Section 2.4. Labeling the

constraint vectors for all discretization points ~x on the boundary and all p by an index l, the discretized

boundary conditions areX
i

bliwð~xiÞ ¼ cl: ð21Þ

For each boundary point, there will be multiple values of the index l. For example, for a discretization of

degree d ¼ 2 and Dirichlet boundary conditions, there will be two values of l for each point, one to enforce
the correct value of w, and the other to enforce the correct value of r2w. For homogeneous boundary

conditions, the cl vanish, of course. To apply inhomogeneous boundary conditions, one must have high-

order approximations to powers of ð@=@tÞ2 acting on the boundary conditions. Application of projection

operators is facilitated by decomposing the outer product matrix

BlmB
X

blibmi; ð22Þ

so that linear equations with the coefficient matrix B can be solved quickly. By virtue of the locality of the

boundary conditions, the matrix B is sparse and is amenable to sparse decomposition by nested dissection

[2]. Then, to apply the projection operator to a particular vector w we solve for the coefficients al,X
m

Blmam ¼ cl �
X
i

bliwð~xiÞ; ð23Þ

and make the replacement



768 S. Wandzura / Journal of Computational Physics 199 (2004) 763–775
wð~xiÞ  wð~xiÞ þ
X
i

albli: ð24Þ

(I use a single index i to label the points because the border points need not be on a regular

lattice.)
2.6. Evolution

Having discretizations of all the operators in hand, time stepping is done by alternating the application

of the discretization of the evolution formula

wð~x;DtÞ ¼ 2LDtwð~x; tÞ � L0wð~x; t � DtÞ ð25Þ

with the discretization of the boundary projection operation

wð~x; tÞ  Pbwð~x; tÞ; ð26Þ

as described in Section 2.5. The discretization of the identity operator L0 is a high-order low-pass filter. As

emphasized in [4], this notation is not arbitrary – L0 is exactly the Dt! 0 limit of LDt, and likewise for their

discretizations.
3. Numerical examples

In this section, I report the results of four examples of the method, exhibiting discretizations of various

degrees (2–8) that give stable results, and the convergence of discretization error with density of sample

points. First, the bulk propagation is studied on a square region with periodic boundary conditions (BCs).

Then, I show two examples with homogeneous BCs, a square with Dirichlet BCs on two opposite sides and

Neumann BCs on the other two, and a disk with Neumann BCs. Finally, I give an example of inhomo-

geneous BCs: a plane wave solution with Dirichlet BCs on a circle.
3.1. Bulk propagation

The stencils for d ¼ 2, s ¼ Dt=Dx ¼ 1, and M ¼ 21 are

L̂1 ¼

0 0:0268657 0:0656716 0:0268657 0

0:0268657 0:143284 0:18209 0:143284 0:0268657
0:0656716 0:18209 0:220896 0:18209 0:0656716
0:0268657 0:143284 0:18209 0:143284 0:0268657

0 0:0268657 0:0656716 0:0268657 0

0
BBBB@

1
CCCCA; ð27Þ
L̂0 ¼

0 �0:041791 0:00895522 �0:041791 0

�0:041791 0:110448 0:161194 0:110448 �0:041791
0:00895522 0:161194 0:21194 0:161194 0:00895522
�0:041791 0:110448 0:161194 0:110448 �0:041791

0 �0:041791 0:00895522 �0:041791 0

0
BBBB@

1
CCCCA: ð28Þ

These are the smallest stencils (for the given values of d and s which result in stable propagation. In Fig. 1,
the stability function
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Fig. 1. Stability function for the stencils given in Eqs. (27) and (28).
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Sðkx; kyÞ � max âðkx; ky ; sÞ
���� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2ðkx; ky ; sÞ � âðkx; ky ; 0Þ

q ���� ð29Þ

is shown. Since Sð0; 0Þ ¼ 1 and Sðkx; kyÞ < 1 for all other values of kx; ky , the propagation is stable. As a

contrast, the stability function for M ¼ 13 is plotted in Fig. 2. Near the corner of the Brillouin zone,

kx ¼ ky ¼ p, it exceeds 1, indicating instability (cf. Fig. 1).

In Table 1 the stencil sizes for s ¼ 1 and 26 d 6 8 are listed. The convergence of the discretization is

examined by computing the deviation from the exact solution

wðx; y; tÞ ¼ cosð2pxÞ sinð4pyÞ cosð2
ffiffiffi
5
p

ptÞ: ð30Þ

Tabulations of the integral of the square of the error as a function of the number N of discretization points

in each direction are given in Table 2 for various orders of discretization and s ¼ Dt=Dx ¼ 1. Periodic

boundary conditions were enforced in the usual way. All calculations were done in machine precision (64

bit reals). Numbers smaller than 10�16 appear because of the squaring of the error. The domain of prop-
0
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Fig. 2. Stability function for the stencils with M ¼ 13.



Table 2

Integrated square error at t ¼ 1=2 (N=2 steps) for a square grid, periodic boundary conditions

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

16 2.6� 10�4 7.1� 10�6 7.2� 10�7

32 1.1� 10�3 2.0� 10�6 3.1� 10�9 2.6� 10�11

48 3.0� 10�4 8.9� 10�8 2.7� 10�11 4.8� 10�14

64 1.1� 10�4 9.4� 10�9 9.0� 10�13 5.2� 10�16

80 4.6� 10�5 1.6� 10�9 6.3� 10�14 1.5� 10�17

96 2.3� 10�5 3.8� 10�10 7.2� 10�15 8.4� 10�19

112 1.3� 10�5 1.1� 10�10 1.1� 10�15 7.4� 10�20

128 7.5� 10�6 3.9� 10�11 2.3� 10�16 1.1� 10�20

Convergence 3.7 7.6 11.6 15.4

Table 1

Minimum stencil sizes, M , needed for stability ðs ¼ 1Þ

d M

2 21

4 25

6 49

8 81
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agation is 06 x; y6 1 and N=2 time steps are used so that the solution is computed up to t ¼ 1=2. The
convergence values given in the tables is p, determined by the fit of the integrated square error �2 ¼ cN�p for
the range of N . The same data are plotted in Fig. 3. All discretizations were verified to be stable by running

for thousands of time steps from white noise initial conditions and monitoring
R
w2ðx; y; tÞdxdy.

3.2. Square region with mixed homogeneous boundary conditions

In this section, I give numerical results for the wave equation in a square domain with homogeneous Di-

richlet boundary conditions on twoopposing sides ðx ¼ 0 and x ¼ 1Þ andhomogeneousNeumann conditions

on the other two sides ðy ¼ 0 and y ¼ 1Þ. I compute the error by deviation from the exact solution

wðx; y; tÞ ¼ sinpxcospy cos
ffiffiffi
2
p

pt: ð31Þ
20 30 50 70 100
# Points

1.×10–20

1.×10–17

1.×10–14

1.×10–11

1.×10–8

0.00001

Integrated Square Error

8

6

4

2

Orders

Fig. 3. Integrated square error at t ¼ 1=2 (N=2 steps) for a square grid, periodic boundary conditions.
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In order to achieve stability, it was necessary to use more points for the discretization of the border

propagation and boundary condition operators for all degrees of discretization. For degrees 6 and 8, more

points in the bulk region were also required. The same number of points were used for all these discreti-
zations. The number of points used is tabulated in Table 3. Tabulations of the integral of the square of the

error as a function of the number N of discretization points in each direction are given in Table 4 for

various orders of discretization and s ¼ 1. The convergence values given in the table are p, determined by

the the fit of the integrated square error �2 ¼ cN�p for the range of N . The same data are plotted in Fig. 4.

All discretizations were verified to be stable by running for hundreds of time steps from white noise initial

conditions and monitoring
R
wðx; y; tÞ2dxdy.
Table 3

Number of points used for the discretization of border propagation and boundary condition operators in square propagation region,

and the amount by which these exceed the number of points used for the bulk propagation operator

d M M �Mbulk

2 21 0

4 33 8

6 89 32

8 163 64

Table 4

Integrated square error, s ¼ 1, mixed boundary conditions

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

16 6.9� 10�2 5.6� 10�4 5.7� 10�4

24 1.4� 10�2 2.0� 10�5 3.9� 10�7 4.6� 10�7

32 5.5� 10�3 1.3� 10�6 7.3� 10�9 6.0� 10�10

40 2.9� 10�3 1.7� 10�7 5.5� 10�10 2.7� 10�11

48 1.5� 10�3 9.0� 10�8 1.7� 10�10 4.4� 10�13

56 1.1� 10�3 7.3� 10�9 8.0� 10�12 7.2� 10�15

Convergence 3.3 8.7 13.8 20.5

20 30 50
# Points

1.×10 –14

1. × 10 –11

1. × 10 –8

0.00001

0.01

Integrated Square Error

8

6

4

2

Orders

Fig. 4. Integrated square error at t ¼ 1=2 (N=2 steps) for a square grid, mixed boundary conditions.
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3.3. Circular region with homogeneous Neumann boundary conditions

In this section, I give numerical results for the wave equation in a circular domain with homogeneous
Neumann conditions at s ¼ a � 1:84118 (the first root of J1ðrÞ). I compute the error as the deviation from

the exact solution

wðr; tÞ ¼ J0ðrÞ cos t: ð32Þ

The circular region of propagation is inscribed in an N � N square grid. The range of time was 06 t6 2p.
The value of s changed somewhat so that t ¼ 2p was reached in an integral number of time steps. For

sparse discretization, s was somewhat less than 1, approaching one as more points were used. Again it was

necessary to use more points (than those used for periodic BCs) for the discretization of the operators. The

same number of points M were used for all these discretization of border propagation operators and
boundary projection operators. The number of points used is tabulated in Table 5. For computation of the

degree 8 discretization coefficients, extended precision arithmetic was used. All time stepping was done in

normal double precision. Tabulations of the integral of the square of the error as a function of the number

N of discretization points in each direction are given in Table 6 for various orders of discretization and

s ¼ 1. They are plotted in Fig. 5. The convergence values given in the tables is p, determined by the fit of the

integrated square error �2 ¼ cN�p for the range of N .

3.4. Circular region with inhomogeneous Dirichlet boundary conditions

Finally, I give results for a plane wave

wðx; y; tÞ ¼ cospðx� tÞ; ð33Þ

using inhomogeneous Dirichlet BCs on a circle of radius 1. As in the previous example, the range of time

was 06 t6 2p and value of s changed somewhat so that t ¼ 2p was reached in an integral number of time

steps. The number of points used is tabulated in Table 7. For computation of the degrees 6 and 8 dis-
Table 5

Number of points used for the discretization of border propagation and boundary condition operators in circular propagation region

with homogeneous Neumann BCs, and the amount by which these exceed the number of points used for the bulk propagation operator

d M M �Mbulk

2 21 0

4 33 8

6 65 16

8 193 96

Table 6

Integrated square error, s ¼ 1, circular boundary with Neumann conditions

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

16 4.0� 10�4 4.5� 10�7

24 3.0� 10�5 8.2� 10�9 6.0� 10�11 8.6� 10�13

32 3.0� 10�6 9.2� 10�10 4.2� 10�13 1.7� 10�15

40 8.4� 10�7 5.1� 10�11 2.0� 10�14 4.6� 10�17

48 2.8� 10�7 1.4� 10�10 1.9� 10�15 1.9� 10�17

56 1.1� 10�7 3.3� 10�12 1.3� 10�16 1.4� 10�19

Convergence 6.6 8.7 15.0 17.1



20 30 50
# Points

1. × 10 –19

1. × 10 –16

1. × 10 –13

1. × 10 –10

1. × 10 –7

0.0001

Integrated Square Error

8

6

4

2

Orders

Fig. 5. Integrated square error, s � 1, circular boundary with Neumann conditions.

Table 7

Number of points used for the discretization of border propagation and boundary condition operators in circular propagation region

with inhomogeneous Dirichlet BCs, and the amount by which these exceed the number of points used for the bulk propagation op-

erator

d M M �Mbulk

2 21 0

4 33 8

6 65 16

8 129 118
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cretization coefficients, extended precision arithmetic was used. All time stepping was done in normal

double precision. Note that, for degree 8, fewer points were required than for homogeneous Neumann

conditions (Section 3.3). This is significant, because one might think it harder to achieve stability with

inhomogeneous BCs. Instead, it seems that inhomogeneous BCs are no harder than homogeneous ones, but

that Dirichlet BCs are easier than Neumann.
Table 8

Integrated square error, s � 1, circular boundary with inhomogeneous Dirichlet conditions

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

16 1.4� 10�2 4.2� 10�4

24 2.1� 10�3 1.2� 10�5 1.5� 10�7

32 2.3� 10�4 1.7� 10�7 7.0� 10�17

40 1.3� 10�4 1.2� 10�8 7.7� 10�11

48 5.9� 10�5 1.3� 10�9 4.2� 10�12 4.0� 10�14

56 4.4� 10�5 6.2� 10�10 6.2� 10�13 2.7� 10�15

64 6.3� 10�14 7.8� 10�16

72 8.8� 10�17

80 1.9� 10�17

88 3.0� 10�19

Convergence 4.8 11.4 14.5 17.7
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Fig. 6. Integrated square error, s � 1, circular boundary with inhomogeneous Dirichlet conditions.
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Tabulations of the integral of the square of the error as a function of the number N of discretization

points in each direction are given in Table 8 for various orders of discretization and s ¼ 1. They are plotted

in Fig. 6. The convergence values given in the tables is p, determined by the fit of the integrated square error

�2 ¼ cN�p.
4. Conclusions

The results presented here show how the approach of AGH [1], as implemented in [4], works in 2+ 1

dimensions. Although I have not used a tapered mesh, small cells are implicit because of the proximity of

the boundary points to the border points. This paper substantiates our previous claim that the method is

formulated in a way that is straightforward to implement in any number of dimensions. It further motivates

study of the issues raised in [4], namely
General stability analysis: Although I have demonstrated stable high-order examples, the general con-

ditions for this behavior remain unknown. This problem is formidable but very important.

First order formulation: The advantages and disadvantages of using w and _w at two time slices instead of

just w at three time slices.

Parametric efficiency analysis: The optimization of choices such as discretization density, degree of

approximation and time step size for desired accuracy.

Tailoring of border mesh: Because the examples of this paper all have fields without singularities at the

boundaries, tapering of the mesh was not indicated. For boundaries that induce singularities, efficiency and
accuracy will depend on the choice of the border mesh.

Finally, it raises a new issue that did not appear in 1 + 1 dimensions, the larger number of points needed

in the border region (compared to the bulk) to maintain stability. The dependence of this on discretization

order, density, and mesh tapering will be very important in practical applications.
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